Personal tools

You are here: Home / Research / Biomedical Image Analysis / Professor Julia Schnabel / Neuro Imaging

Neuro Imaging

 

We are developing novel techniques for fetal MR reconstruction, fetal 3D ultrasound to reconstructed 3D fetal MRI registration, and neonatal brain segmentation using expectation-maximisation methods.

Selected Publications:

  • I Isgum, MJNL Benders, B Avants, MJ Cardoso, SJ Counsell, E Fischi Gomez, L Gui, P Huppi, KJ Kersbergen, A Makropoulos, A Melbourne, P Moeskops, C Mol, M Kuklisova-Murgasova, D Rueckert, JA Schnabel, V Srhoj-Egekher, J Wu, S Wang, LS de Vries, MA Viergever. Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge. Accepted for publication in Medical Image Analysis.

  • M Kuklisova-Murgasova, A Cifor, R Napolitano, A Papageorghiou, G Quaghebeur, MA Rutherford, JV Hajnal, JA Noble, JA Schnabel. Registration of 3D fetal neurosonography and MRI. Medical Image Analysis. http://dx.doi.org/10.1016/j.media.2013.07.004

  • M Kuklisova-Murgasova, G Quaghebeur, MA Rutherford, JV Hajnal, JA Schnabel. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Medical Image Analysis, 16 Dec 2012(8):1550-64. doi: http://dx.doi.org/10.1016/j.media.2012.07.004.

  • S Wang, M Kuklisova-Murgasova, JA Schnabel. An atlas-based method for neonatal MR brain tissue segmentation. Proceedings of the MICCAI Grand Challenge: Neonatal Brain Segmentation (NeoBrainS12), 2012. 

 

We are also developing novel analytic methods for neurorlogical diseases such as Alzheimers' disease, using novel registration technology based on uncertainty estimates or molecular imaging.

Selected Publications:

 

  • J Jiao, GE Searle, AC Tziortzi, CA Salinas, RN Gunn, JA SchnabelSpatio-temporal pharmacokinetic model based registration of 4D PET neuroimaging data. NeuroImage, Vol. 84:225–235, 2014.
  • L Cattell, JA. Schnabel, J Declerck, C Hutton. Investigation of Single- Versus Joint-Modality PET-MR Registration for 18F-Florbetapir Quantication: Application to Alzheimer's Disease. MICCAI 2014 Workshop: Computational Methods in Molecular Imaging (CMMI), 2014.

  • IJ Simpson, MW Woolrich, MJ Cardoso, DM Cash, M Modat, JA Schnabel, S Ourselin. A Bayesian Approach for Spatially Adaptive Regularisation in Non-Rigid Registration. Proceedings for the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2013, LNCS, Springer (2013). MICCAI 2013 Young Scientist Award.

  • IJA Simpson, Mark W. Woolrich, JLR Andersson, AR Groves, JA Schnabel and the Alzheimer’s Disease Neuroimaging Initiative. Ensemble learning incorporating uncertain registration. IEEE Transactions on Medical Imaging, 2013, 32(4):748 -756. http://dx.doi.org/10.1109/TMI.2012.2236651
  • IJA Simpson, JA Schnabel, AR Groves, JL Andersson, MW Woolrich. Probabilistic inference of regularisation in non-rigid registration. NeuroImage, 2012 vol.59(3), pp 2438–2451.